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Real-Time Gait Phase Estimation for Robotic Hip
Exoskeleton Control During Multimodal Locomotion

Inseung Kang , Dean D. Molinaro, Srijan Duggal, Yanrong Chen, Pratik Kunapuli , and Aaron J. Young

Abstract—We developed and validated a gait phase estimator for
real-time control of a robotic hip exoskeleton during multimodal
locomotion. Gait phase describes the fraction of time passed since
the previous gait event, such as heel strike, and is a promising
framework for appropriately applying exoskeleton assistance dur-
ing cyclic tasks. A conventional method utilizes a mechanical sensor
to detect a gait event and uses the time since the last gait event to
linearly interpolate the current gait phase. While this approach
may work well for constant treadmill walking, it shows poor per-
formance when translated to overground situations where the user
may change walking speed and locomotion modes dynamically. To
tackle these challenges, we utilized a convolutional neural network-
based gait phase estimator that can adapt to different locomotion
mode settings to modulate the exoskeleton assistance. Our result-
ing model accurately predicted the gait phase during multimodal
locomotion without any additional information about the user’s
locomotion mode, with a gait phase estimation RMSE of 5.04 ±
0.79%, significantly outperforming the literature standard (p <
0.05). Our study highlights the promise of translating exoskeleton
technology to more realistic settings where the user can naturally
and seamlessly navigate through different terrain settings.

Index Terms—Convolutional neural network, exoskeleton, gait
phase estimation, locomotion mode, machine learning.

I. INTRODUCTION

GAIT phase is a continuous state variable that represents
the user’s movement during the gait cycle. This variable

is defined as a linearly increasing value between 0 and 100
where both 0 and 100 represent a single deterministic gait event
(e.g., heel contact or toe-off). This is critical information for
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controlling wearable devices, such as robotic exoskeletons, as
recent studies have shown that providing exoskeleton assistance
with accurate timing is crucial for maximizing user benefit
[1]–[3].

A conventional gait phase estimation method in the field is
time-based estimation (TBE) which utilizes a mechanical sensor
(e.g., a foot switch placed at the user’s heel) to detect the user’s
heel contact during locomotion [4], [5]. Using this heel contact
information, the user’s gait phase is estimated by dividing the
time since the most recent heel contact by the user’s average
stride duration from previous strides. While this method may
work reliably on a treadmill at a constant walking speed, it fails to
provide an accurate estimate once the user dynamically changes
walking speeds (gait phase estimation either leads or lags).
Moreover, when walking overground in different locomotion
modes (e.g., ramps and stairs), TBE can show greater error
in gait phase estimation as the stride duration can drastically
change from one locomotion mode to another. Therefore, a
robust gait phase estimation method is needed to translate robotic
exoskeleton technology to more realistic settings.

Previously, different research groups have tackled the de-
velopment of a robust gait phase estimator [6]–[9]. Ronsse
et al. leveraged the sinusoidal nature of hip joint angle during
locomotion and computed the user’s gait phase using an adaptive
oscillator approach [6]. Villarreal et al. estimated the user’s gait
phase by mapping the hip joint angle into a time-independent
phase variable [9]. While these heuristic methods showcased
promising results by adapting to different user states (changing
walking speeds), they are still inherently limited as they require a
gradual change from one state to another (e.g., slowly accelerat-
ing to another speed). This is not representative of the real world,
as the user will dynamically change into different locomotion
modes and accelerate/decelerate.

One possible solution to this challenging problem is to
use deep learning [10]. Previously, we implemented a neural
network-based gait phase estimator in real-time and validated
that a machine learning (ML) model can robustly estimate the
user’s gait phase during different walking speeds [11]. However,
the study was limited to level ground treadmill walking and did
not validate the feasibility of translating this estimation approach
to other terrain settings. One advantage that deep learning mod-
els have over other ML models is that they do not require any
manual feature engineering and therefore are not limited to the
specific features that a researcher engineers. Thus, in this study,
we exploited our previous findings and the end-to-end capability
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Fig. 1. (a) Robotic hip exoskeleton. Different mechanical sensors on the
device measure the user’s kinematic information during walking. The Jetson
co-processor estimates the user’s gait phase in real-time. (b) The terrain park
used for the human subject experiment consisting of five locomotion modes.
The red line indicates the path that each subject walked across the terrain park.

of deep learning models to extend gait phase estimation to an
overground scenario with multiple locomotion settings.

The primary contribution of our study is that we have pre-
sented a deep learning-based estimation strategy that can predict
the user’s gait phase across different locomotion modes (in-
cluding mode transitions) without any additional information
about the user’s current locomotion mode. This is an important
contribution to autonomous exoskeleton control because gait
phase is a critical state variable that is directly related to ac-
curate exoskeleton control. Thus, to translate the exoskeleton
technology to a real-world scenario, a model that can robustly
predict the user’s gait phase during multimodal locomotion is
necessary.

II. GAIT PHASE ESTIMATION DEVELOPMENT

A. Robotic Hip Exoskeleton

We used the Gait Enhancing and Motivating System (GEMS),
a bilateral hip exoskeleton developed by Samsung Electronics
(Suwonsi, Gyeonggi-do, South Korea) [12], which has a mass of
2.1 kg and can provide a peak torque of 12 Nm in hip flexion and
extension (Fig. 1a). We recorded 6-axis inertial measurement
unit (IMU) data of the trunk and bilateral hip encoder position
and velocity from the onboard sensors at 200 Hz. We incor-
porated an additional onboard machine learning co-processor
(Jetson Nano, NVIDIA, USA) for real-time inference of the deep
learning model. The exoskeleton and the co-processor commu-
nicated via an ethernet cable using TCP/IP to transfer data.

B. Biological Torque Controller

The exoskeleton was controlled using a biological torque
controller, in which the reference signal for each locomotion
mode was shaped to fit normative biological hip joint moment
profiles per locomotion mode (LG - Level Ground, RA - Ramp
Ascent, RD - Ramp Descent, SA - Stair Ascent, SD - Stair De-
scent) (Fig. 2). The normative hip joint moment profiles used for
the controller were based on an open-source biomechanics data
set [13]. The assistance profile was scaled to mimic the change in
biological hip joint moment demands with varying locomotion

Fig. 2. Reference hip torque trajectories generated by the developed biolog-
ical torque controller using a sum of univariate Gaussians. Five colored lines
represent torque profiles for different locomotion modes where 0% of the gait
phase represents toe-off.

modes where the peak torque magnitudes were chosen with
similar values to those used in two previous hip exoskeleton
studies, which reduced the metabolic cost of level [12] and
uphill [14] walking using a similar controller and hardware.

This controller was used since it is an effective assistance
strategy for augmenting human walking [3], [15]–[18] and is
generalizeable to multiple locomotion modes [14]. To ensure
continuous and periodic assistance, each assistance trajectory
was fit to the corresponding joint torque profile using a sum
of univariate Gaussians [19]–[21]. Given the current gait phase
x, the desired assistance torque τ was computed using the
locomotion mode-specific shaping constants (a, μ, and σ which
were manually tuned to represent a smooth hip torque profile
based on the biological hip moment) using Equation (1),

τ =

n∑
i=1

aiN (x, μi, σi), (1)

where the Gaussian distribution N was defined as

N (x, μ, σ) = e−
1
2 (

x−μ
σ )2 . (2)

The amplitude coefficients (a) were selected to scale the
peak assistance torque to 6, 4.5, and 3 Nm for ascent, level,
and descent locomotion modes, respectively, to ensure that
the assistance level was scaled for each mode. The finalized
assistance level showed a similar order of magnitude compared
to other literature studies that have successfully improved human
locomotion [14], [22].

To provide this assistance in real-time, the exoskeleton on-
board processor communicated with the experimenter’s com-
puter over Bluetooth. Using the keyboard, the experimenter
manually selected the user’s locomotion mode in real-time. This
selection queued the next locomotion mode for the exoskeleton,
which transitioned into that mode at toe-off on each side. The
onboard exoskeleton processor then selected the appropriate
reference torque trajectory based on the current locomotion
mode per leg. Based on the gait phase estimate from the TBE or
ML model, the instantaneous commanded assistance was then
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determined using Equation (1), using the locomotion mode-
specific constants.

C. Training Data Collection

We recruited ten able-bodied subjects with an average age of
25.2 ± 5.0 years, height of 1.72 ± 0.08 m, and body mass of
66.7 ± 7.6 kg (3 females/7 males) to obtain the initial training
data set. The study was approved by the Georgia Institute of
Technology Institutional Review Board and informed written
consent was obtained for all subjects. All subjects were asked to
walk across a terrain park with the exoskeleton at their preferred
walking speed for 5 circuit trials (walking in both clockwise and
counter-clockwise directions to include all locomotion modes).
Each trial included five locomotion modes (level ground, ramp
ascent/descent at 11 ◦ slope, and stair ascent/descent at 15.24 cm
height) (Fig. 1b). As the user navigated the terrain park, the
experimenter specified the user’s locomotion mode in the bio-
logical torque controller via manual keyboard input, resulting in
the corresponding hip assistance.

The controller utilized the TBE method for estimating the
user’s gait phase using the stride duration from a single previous
gait cycle (to minimize the delay in responding to the mode
transition). While the implementation of a robust TBE method
(e.g., multiple peak detection to estimate gait phase in several
discrete gait events) was possible, we wanted to compare to a gait
phase estimation strategy that was commonly used in previous
literature studies due to its ease of implementation. We utilized
TBE-based assistance during training data collection rather
than the transparent mode to minimize any potential discrepan-
cies in the kinematic information (when provided with enough
assistance magnitude) between the assistance mode and the
transparent mode. The mode transition was marked during the
stance phase prior to the transiting mode (the mode-dependent
controller switched the assistance profile for the following swing
phase). Throughout the experiment, all mechanical sensor data
from the exoskeleton were recorded.

D. Ground Truth Labeling

Our previous study utilized a force-sensitive resistor (FSR)
sensor at the heel to detect a deterministic point in the gait cycle
(e.g., heel contact) to label the ground truth gait phase [11].
This method can be problematic as the FSR can fail to detect
accurate ground contact events when foot contact locations
are inconsistent (e.g., stair descent). Another disadvantage is
that requiring an additional sensor outside of the exoskeleton
sensor suite and interface area is not ideal from an exoskeleton
designer’s perspective. Instead, we utilized the user’s hip joint
position from the encoder. We marked the user’s maximum hip
extension (corresponding to toe-off) as 0% of the gait cycle
and labeled the data correspondingly. Similar to our previous
approach, we converted the labeled gait phase percentage into
Cartesian coordinates to avoid discontinuity in the boundary
condition of toe-off (sudden drop from 100% to 0%), as this
would be detrimental to the model’s learning and evaluation.

E. Offline Model Optimization

Two deep neural networks were explored for optimizing
our gait phase estimator. The first was a convolutional neural

network (CNN) and the second was a long-short term memory
(LSTM) Network. These two networks were specifically chosen
for our model optimization as each network has its own strengths
in solving the gait phase estimation problem. The CNN is a
powerful deep learning technique where feature information
(which is hand-engineered in a conventional machine learning
approach) is extracted inherently within the neural network
architecture, and the model is quick to train [23]. The LSTM is
a recurrent neural network-based approach where the estimated
variables contribute to the network’s memory (leveraging the
sequential nature of the input data) and are utilized in the
estimation of the next time step [24]. To make a fair comparison
between the two models, we ensured that the space of tunable
hyperparameters (e.g., the number of nodes and layers) was kept
similar. A variety of hyperparameter configurations were com-
pared when optimizing each model, where model performance
was evaluated using 5-fold cross-validation for each subject
(each validation fold consisted of all five locomotion modes). To
ensure that the gait phase error was evaluated accurately during
the transition from one gait cycle to the next, where 100 and 0
represent the same value, we used an angular similarity metric
by computing the cosine distance between the predicted and the
ground truth Cartesian coordinates. The root mean square error
(RMSE) of each stride was then computed as the percentage
representation of the root mean square of the angular similarity
metric over the gait cycle.

We leveraged the bilateral nature of the hip exoskeleton by
fusing sensor data from both joints to increase the overall gait
phase estimation accuracy [25]. The fully optimized CNN was
trained using a stochastic gradient descent (SGD) optimizer with
a learning rate of 0.01 and a batch size of 128, iterating over
a maximum of 200 epochs. For all hyperparameters, we have
validated our model performance on the extreme cases (i.e.,
values outside of our hyperparameter range) to ensure that our
optimized parameters did not fall into local minima. Early stop-
ping was used on a hold-out validation set during final training
to avoid overfitting with stopping criteria based on the change
in validation loss. The model had a data input size of 10 channel
values (left/right hip position/velocity and trunk IMU) for every
time step of 5 ms with a window size of 80 data samples (Fig. 3).
The first layer consisted of a batch normalization, where the
input values were normalized to a zero mean and unit variance.
The second layer consisted of a 1D convolution of 10 filters
striding temporally, where each filter had a kernel size of 20.
The third layer was another 1D convolution of 10 filters, where
each filter had a kernel size of the previous layer’s window size
and compressed the data into a single row vector (representing
the extracted feature information). A sigmoid activation function
was applied to this vector and passed the data to a fully connected
dense layer with a tanh activation function. The final output of
the CNN consisted of 4 values (x and y Cartesian coordinates
for each leg), where the gait phase conversion was applied using
Equation (3).

gait phase =
(
(tan−1(

y

x
) + 2π)mod 2π

)
× 100

2π
(3)
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Fig. 3. Locomotion mode independent gait phase estimation strategy using a convolutional neural network. Time series data from the exoskeleton is read with
defined window size. Two convolutional layers with an additional fully connected dense layer map the raw data to the corresponding gait phase. The converted gait
phase along with locomotion mode information are utilized as inputs to the biological torque controller.

Similar to the CNN, the LSTM was optimized using a stan-
dard model architecture and hyperparameter sweep. The fully
optimized LSTM was trained using an SGD optimizer with a
learning rate of 0.01 and a batch size of 128, iterating over a
maximum of 100 epochs with early stopping. The final LSTM
had a data input size of 10 channel values with a window
size of 60 data samples. The architecture consisted of a batch
normalization layer, followed by an LSTM layer consisting of
60 LSTM cells with a tanh activation function and a hidden state
size of 20. The output hidden state of the final cell in the LSTM
layer was then passed down to a fully connected dense layer with
a tanh activation function, where the final output had 4 values
representing each leg’s gait phase in Cartesian coordinates.
Similar to the CNN, the gait phase conversion Equation (3) was
used to calculate the final gait phase percentage.

Overall, the optimized model performances were nearly the
same between the CNN and LSTM (Section IV-A). Given that
the LSTM had a longer training time, as it requires to be pro-
cessed sequentially, we chose to use the CNN for real-time im-
plementation. For real-time inference, we trained an optimized,
user-dependent model for each subject using data from all 5
trials. The trained model configuration and weights were saved
to an hd5 file.

III. REAL-TIME INFERENCE VALIDATION

A. Online Inference Deployment

The online inference was performed on the Jetson using
Keras [26] with a TensorFlow backend [27]. We ran a Python
script that used the CNN model and weights for the current
subject from the saved hd5 file. The Jetson was connected to
the exoskeleton using TCP/IP, where a static buffer was sized
equally to the CNN model’s window size. The Jetson received
the mechanical sensor data, computed an estimate of the user’s
gait phase, and communicated the estimate back to the exoskele-
ton at 200 Hz. The estimated gait phase was then used as an input
to the biological torque controller.

B. Human Subject Experiment

We evaluated the performance of the gait phase estimator
on the same ten subjects that participated in the initial data

collection on a separate day. All subjects were asked to walk
with the exoskeleton at their preferred walking speed across the
terrain park. Each subject walked 3 circuits along the same path
as the training data collection, with the hip assistance generated
using either the baseline TBE method or the optimized ML
model (total of 6 circuits). The corresponding torque profile for
each locomotion mode was generated based on the estimated
gait phase from the CNN or TBE, and the locomotion mode
was input to the exoskeleton manually by the experimenter
during walking (locomotion mode input was only utilized to
generate a relevant torque profile for each mode). For all trials,
the gait phase estimates and all mechanical sensor data were
recorded. The performance metric for the model was the gait
phase estimation RMSE. The model was evaluated within each
steady-state locomotion mode and during a transition gait cycle
between two locomotion modes (e.g., one gait cycle that includes
LG and RA).

C. Statistical Analysis

To evaluate the model performance across all terrain condi-
tions, we conducted a two-way repeated measures analysis of
variance (ANOVA) with an α value set to 0.05. Additionally,
a Bonferroni post-hoc correction for multivariate analysis was
utilized to compute the statistical difference between each con-
troller and terrain condition (Minitab 19, USA).

IV. RESULTS

A. Model Optimization and Online Performance

The final model from an offline model optimization had an
average gait phase estimation RMSE across all subjects of 4.37
± 0.68% and 4.41 ± 0.67% for the CNN and the LSTM,
respectively. Using the optimized CNN-based architecture for
the online performance validation, the ML model on average
had a 71.08 ± 5.72% lower gait phase estimation RMSE than
the TBE method, across all subjects (p< 0.05, Fig. 4a). For each
specific mode, the ML model on average had a 75.17 ± 6.79%,
50.0 ± 20.6%, 74.86 ± 7.41%, 61.59 ± 13.78%, and 67.07 ±
5.91% lower gait phase estimation RMSE than the TBE method
across all subjects, for LG, RA, RD, SA, and SD, respectively (p
< 0.05, Fig. 4b). Across all locomotion modes, the ML model on
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Fig. 4. (a) Overall gait phase estimation performance for the CNN-based
ML model (blue) and the time-based estimation method (red). (b) Gait phase
estimation performance for each specific locomotion mode. (c) Gait phase
estimation performance during a transition gait cycle. Error bars represent ±
1 standard deviation. Asterisks indicate statistical significance (p < 0.05).

average had a 62.62 ± 5.62% lower corresponding commanded
torque RMSE than the TBE method, across all subjects (p <
0.05, Fig. 5).

B. Transition Gait Cycle Analysis

During transition gait cycles, the ML model on average had a
61.48 ± 13.04%, 79.20 ± 6.29%, 66.48 ± 9.60%, and 56.21 ±
5.07% lower gait phase estimation RMSE than the TBE method
for RA, RD, SA, and SD transitions, across all subjects, respec-
tively (p < 0.05, Fig. 4c). During a transition gait cycle, the ML
model on average had a 34.33 ± 11.02% lower corresponding
commanded torque RMSE than the TBE method, across all
subjects (p < 0.05).

V. DISCUSSION

The key contribution of our study was to develop a gait phase
estimator robust to variations in the user’s locomotion mode
for real-time control of a robotic hip exoskeleton. Overall, our
ML model was able to accurately estimate the user’s gait phase
in real-time without additional information about the user’s
locomotion mode (except for manual keyboard input for the
torque controller) and provide corresponding hip assistance to
the user across all locomotion modes (Fig. 5). Not only did our
ML model outperform the TBE method during the transition
gait cycle by reducing the error rate by 67%, but it also had
better performance compared to the TBE method within each
specific mode, reducing the error rate by 69%. One of the

main factors that induced a greater error in the TBE method
was the false peak detection (especially for descent modes
where the hip joint trajectory is not smooth), which incorrectly
reset the user’s estimated gait phase to 0% during the stride.
Additionally, changes in walking speed resulted in inaccurate
stride duration, causing the TBE method to either lead or lag
in gait phase estimation. Conversely, the ML model was able to
dynamically adapt to the user’s walking speeds and locomotion
modes.

For the TBE method, LG, RA, and SA modes generally had
a better performance than the RD and SD modes across all
subjects. These results were expected since the hip kinematics
for LG and ascent modes included a single maximum in hip
extension angle in contrast to the descent modes, which included
multiple local maxima in hip extension angle, leading to false
peak detection. On the other hand, the ML model did not show
any significant performance differences between locomotion
modes (ML’s worst performing SD had 1.6% lower RMSE than
the TBE’s best performing SA). This exciting result illustrates
the power of a deep learning approach, where the estimator was
able to generalize the kinematic information at the hip across
different locomotion modes to accurately estimate the user’s gait
phase, regardless of any local noise induced during individual
modes (RD and SD).

The TBE method estimated the user’s gait phase with a better
performance during a transition from level to ascent modes
compared to descent modes by 46%. This was because the user’s
stride duration value (from LG to RA or SA) was updated in
an increasing direction. In such cases, the exoskeleton torque
command may have a shifted onset timing (e.g., assistance being
early), which is not a critical problem as the user is still moving
in the same direction as the exoskeleton. However, transitions
from level to descent modes can be problematic. Descent mode
transitions cause the user’s stride duration value (from LG
to RD or SD) to decrease, which can cause the exoskeleton
to generate delayed assistance. In such scenarios, the delayed
torque command caused a false peak that resisted the user’s
movement. During our experiment, this phenomenon caused
the controller to oscillate between stance and swing states after
mode transition, causing the system to reach instability (the
exoskeleton movement was out of sync with the user). However,
this problem was not observed in any of our ML model cases, as
the ML model learned the user’s gait dynamics during different
locomotion mode transitions from the training data set.

The torque profile tracking results from the TBE method
(Fig. 5b) clearly indicate that this method is inadequate for usage
in an overground situation, as the torque profile generated using
this method was sub-optimal to the user (if the exoskeleton is out
of sync it will impede the user’s movement). Our results showed
that the overall gait phase estimation error corresponded to a
commanded torque RMSE of 2.08 Nm for the TBE method.
While our exoskeleton’s commanded torque range was within
the boundary of the user’s physical capability, this error could be
detrimental to the user if the exoskeleton, using the TBE method,
generated a greater joint torque than the user could resist. In
contrast, our ML model showed a commanded torque RMSE of
only 0.77 Nm across all locomotion modes, illustrating its ability
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Fig. 5. Time series plot of the real-time gait phase estimation using (a) the CNN-based ML model and (b) the time-based estimation method from a single subject
with a gait phase estimation error very near the average of the 10 subjects. Each segment in the graph represents a single gait cycle within each locomotion mode
(steady-state and transition). The top subplot represents the estimated gait phase and the bottom represents the corresponding exoskeleton torque commanded to the
user. The grey line for the gait phase and torque profile indicates the ground truth trajectory with a corresponding gait phase estimation and torque RMSE within
each locomotion mode type.

to safely determine the exoskeleton assistance for the user (seen
visually in Fig. 5a).

Our ML model showed comparable performance to our pre-
vious work [11], where we were able to achieve a gait phase
estimation error rate of 4%. The key difference is that our
previous model was only evaluated on a treadmill, whereas
our new approach expanded its application to different loco-
motion modes and was able to achieve real-world usefulness
at the cost of 1% gait phase estimation accuracy. This was
possible by leveraging the end-to-end CNN approach to ex-
tract additional feature information instead of the conventional
manual feature engineering approach [28]. Currently, the state-
of-the-art method in estimating the user’s gait phase is to use
the non-user-specific adaptive oscillator approach, which has
a gait phase estimator error rate of 3% [29], [30]. However,
this method was only evaluated during steady-state, treadmill
walking, which is not representative of real-world locomotion.
Moreover, this method requires an additional sensor to be placed
outside the device interface region, such as a capacitance sensor
around the shank. Considering that our ML model only utilized
the sensors internal to the exoskeleton (hip encoder and trunk
IMU), our model is more promising from an exoskeleton design
perspective.

One limitation of the study is that the developed ML
model was trained on a user-specific basis. However, our user-
dependent approach only required approximately 5 minutes of
data collection, which is not unreasonable to expect from a
novel exoskeleton user. Another limitation is that our study
did not showcase the ability of the network to generalize to
environments and circumstances beyond the training data set
(e.g., different ramp slopes and stair heights). However, our main
objective in this work was to demonstrate that deep learning
techniques could be used to estimate gait phase across locomo-
tion modes. Future directions based on our findings will focus
on developing a model that can generalize its performance to

unseen conditions (different user and environmental settings)
and evaluating its effect on human outcome measures.

VI. CONCLUSION

Our CNN-based gait phase estimator effectively characterized
the user’s gait phase across multiple locomotion modes and
transitions online. Not only did our model reach state-of-the-art
performance, but it was also able to generalize to other ter-
rain settings. Our results showed great promise in translating
laboratory-based exoskeleton technology to a more realistic
setting where the user can dynamically receive assistance re-
gardless of locomotion mode. Future directions from this study
will focus on developing and evaluating human outcomes us-
ing a user-independent gait phase estimator during multimodal
locomotion.
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