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Real-Time Neural Network-Based Gait Phase
Estimation Using a Robotic Hip Exoskeleton

Inseung Kang , Student Member, IEEE, Pratik Kunapuli, and Aaron J. Young

Abstract—Lower limb exoskeletons provide assistance during
the gait cycle using a state variable, one in particular is gait
phase. This is crucial for the exoskeleton controller to provide
the user accurate assistance. Conventional methods often uti-
lize an event marker to estimate gait phase by computing the
average stride time. However, this strategy has limitations in
adapting to dynamic speeds. We developed a sensor fusion-based
neural network model to estimate the gait phase in real-time
that can adapt to dynamic speeds ranging from 0.6 to 1.1 m/s.
Ten able-bodied subjects walked with an exoskeleton using our
estimator and were provided with corresponding torque assis-
tance. Our best performing model had RMSE below 29 ms and
4% for real-time estimation and torque generation, respectively,
reducing the estimation error by 36.0% (p < 0.01) and torque
error by 40.9% (p < 0.001) compared to conventional methods.
Our results indicate that creating a general user-independent
model and additionally training on user-specific data outperforms
the user-specific model and user-independent model. Our study
validates the feasibility of using a sensor fusion-based machine
learning model to accurately estimate the user’s gait phase and
improve the controllability of a lower limb exoskeleton.

Index Terms—Exoskeleton, gait phase estimation, machine
learning, sensor fusion, neural network.

I. INTRODUCTION

RECENT technological advancement in the field of lower-
limb exoskeletons has opened numerous opportunities in

the domain of human augmentation [1], [2]. The applications
of these exoskeletons can be expanded to several areas such as
human performance enhancement, wearable robotics for daily
assistance, and rehabilitation in healthcare settings [3]–[5].
The advantage of using powered exoskeletons comes from
their ability to implement different controllers to provide
assistance during locomotion [6]–[13]. These exoskeleton con-
trollers heavily rely on understanding the user’s state, such as
gait phase, during locomotion so that the device can correctly
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assist at the desired timing. Gait phase, a continuous variable
representing the gait cycle, is defined as a linearly increasing
value between 0 and 100, where both values represent heel
contact on a single leg during locomotion. Accurate estima-
tion of the gait phase is paramount for the device to provide
assistance at the desired timing to the user, resulting in optimal
performance [14], [15].

Different strategies have been introduced to estimate user
gait phase. A common method is to estimate the gait phase
using a mechanical sensor such as a force sensitive resistor
(FSR) sensor placed at the heel [16], [17]. From the FSR sen-
sor, average stride time can be computed from some previous
number of steps and the user’s gait phase is determined from
the time since last heel contact compared to the average stride
time. While this method is easy to implement, it has many
drawbacks including the need to place the sensor in a dis-
tal area and the inability of the method to adjust to speed
changes quickly, since many steps need to be taken for the
average stride time to converge to another value. Another
method is to use a finite state machine and segment the
gait phase into discrete events (i.e., stance and swing phase).
Different mechanical sensors are used to trigger transitions
through the state machine, and each state has unique assis-
tance [18]–[20]. The drawback of this approach is since states
are represented discretely as opposed to continuously, transi-
tions may not be seamless and multiple assistance controllers
must be developed, one for each state. Another method used
in the literature is incorporating a phase variable approach
with the hip joint angle [21], [22]. This method leverages the
sinusoidal nature of hip joint angle during level walking and
converts the joint angle into gait phase. This phase variable
approach is more robust compared to the FSR-based method
since it maps the hip joint configuration into gait phase directly
making it more accurate than a moving average. However, this
method still requires the user to be in a rhythmic motion (i.e.,
constant walking) and cannot accommodate abrupt changes in
walking speeds such as stopping. Lastly, other research groups
applied a more complex method of using an adaptive oscillator
approach [23], [24]. This method also employed the idea of
the hip joint trajectory being a sinusoidal wave. The algorithm
understands the frequency and the envelope from the user’s
joint trajectory and generates a similar sine wave represent-
ing the user’s gait phase. This method is a robust method of
adapting to different walking speeds. However, if a user expe-
riences a sudden change to their walking pattern (i.e., stumble),
the estimation can become unsynchronized. Furthermore, this
method is far more complex than the other two methods, which
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requires subject-specific tuning and may increase the overall
computational cost when implementing it to an autonomous
device.

One possible solution to such problems involves machine
learning (ML). Some research groups have started to utilize
different ML techniques using a mechanical sensor from the
device to understand the user’s gait dynamics [25], [26]. In
order to further improve the model’s robustness, ML with sen-
sor fusion techniques can be applied [27], [28]. By utilizing a
multi sensor modality through a sensor fusion approach, dif-
ferent mechanical sensors on the exoskeleton device can add
meaningful information to comprehend the user’s gait phase
more accurately. This approach will also allow the device to
accommodate the user’s dynamic movement more accurately.
Although there are a plethora of ML models being developed
and researched, neural networks have gained recent attention
for their use in deep learning tasks [29], and the power of
neural networks to learn difficult and complicated tasks is well
documented [30]. Additionally, once trained, neural networks
are amenable to real-time processes on an embedded system
via implementation as a series of matrix operations. Thus, we
elected to follow deep learning approaches in adopting a neural
network for our machine learning task.

The main purpose of this study was to test the hypothesis
that the multi sensor fusion-based machine learning model per-
forms with higher accuracy in estimating the user’s gait phase
than the event detection method using a mechanical sensor
during dynamic speed locomotion tasks. Our sub-hypothesis
is that a model trained with user-specific data will have less
estimation error, especially in dynamic settings, compared to
a generalized model [31]. To test our hypothesis, we used a
powered bilateral hip exoskeleton incorporated with different
gait phase estimator methods. Our estimator utilized a neural
network machine learning model to estimate user gait phase
from the hip joint angle and thigh IMU data. The overall goal
of our study was to better understand the feasibility of imple-
menting the machine learning model to estimate the user’s
state in a real-time application. This accurate high-level esti-
mation of human locomotion using a sensor fusion strategy
will help exoskeleton and other wearable robotics developers
to improve device performance.

II. INITIAL SYSTEM CHARACTERIZATION

A. Powered Hip Exoskeleton

Our study utilized a previously designed powered bilateral
hip exoskeleton (Fig. 1A) [32]. The device comprises two ball
screw driven series elastic actuators (SEAs) using brushless
DC motors (EC30, Maxon Motors, Switzerland) with an ini-
tial timing belt gear reduction. The actuator output linkage
incorporates a fiberglass spring with a strain gauge, allowing a
closed loop low-level torque control. The exoskeleton houses
several on-board mechanical sensors (Fig. 1B). The device
has two 14-bit absolute magnetic encoders (Orbis, Renishaw,
U.K.) placed at the actuator output that measure the hip joint
angles bilaterally. Three inertial measurement units (Micro
USB, Yost Lab, USA) (IMUs) are mounted on the device: two
located on each thigh segment bilaterally and one on the trunk

Fig. 1. Powered bilateral hip exoskeleton. (A) The device can provide power
assistance along the sagittal plane. The user interface can be adjusted to
accommodate different user body sizes. (B) Multiple mechanical sensors are
placed on the device to measure the user’s movement. The IMUs are placed
one on the trunk and one on each thigh segment, encoders are located at the
hip joint bilaterally, and the FSR sensors are placed at each heel of the user.

to measure the limb orientations. The IMUs instrumented on
the device can compute the Euler angles through a built-in
Kalman filter, representing their orientation in three dimen-
sions. Lastly, FSR sensors are placed on each heel to detect
the heel strike during walking. All the sensors and actuators
were commanded using a microprocessor incorporated with an
FPGA (myRIO, National Instruments, USA). All the on-board
sensor data was sampled and recorded at 100 Hz.

The overall control architecture of our device is broken
down into high-, mid-, and low-level layers. The high-level
layer incorporates different types of gait phase detection algo-
rithms and estimates the gait phase in real-time. The gait
phase is then passed down to the mid-level layer, where
the control loop generates a desired torque assistance pro-
file. For this study, the mid-level controller had two different
implementations. For the initial data collection experiment, we
used a “zero impedance” mode, which refers to the actuator
cancelling out any interaction torque measured (by command-
ing 0 Nm torque) at the hip joint so that the user feels natural
in movement. For the real-time experiment with active torque
generation, we used a controller that mimics the nature of
biological hip moment profile shape [33]. The desired torque
profile was generated in a form of a sinusoidal wave with
predefined peak torque magnitude occurring at 0% (heel strike)
of the gait cycle for hip extension and 50% of the gait cycle for
hip flexion. Lastly, a low-level layer receives the commanded
torque and ensures that the correct torque is being provided to
the user through a closed loop PID torque controller utilizing
the SEA design.

B. Data Collection for Model Optimization

The study was approved by the Georgia Institute of
Technology Institutional Review Board, and informed written
consent was obtained for all subjects. Eight healthy sub-
jects with an average age of 22.3 ± 2.4 years, height of
1.77 ± 0.06 m, and body mass of 74.4 ± 7.6 kg were asked
to walk on the treadmill (TuffTread, USA) with the pow-
ered hip exoskeleton for 2 minutes at walking speeds ranging
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Fig. 2. Gait phase output conversion. To eliminate the inherent discontinuity
of a gait phase output (where 100% is equal to 0%), the signal is converted
to a unit polar coordinate system where the gait phase is represented as (x, y).
An example of gait phase conversion is shown with a green star.

from 0.6 m/s to 1.0 m/s with an increment of 0.05 m/s for
a total of 18 minutes. The exoskeleton was put into zero
impedance mode for all 9 conditions. During all walking con-
ditions, mechanical sensor data from the right thigh and trunk
IMUs, the hip joint angle from the encoder, and the heel con-
tact information (for ground truth calculation) from the FSR
sensor were recorded. All eight subjects’ data was used for
training the baseline neural network model.

C. Neural Network Model Offline Optimization

Raw FSR sensor voltages were used for the ground truth
calculation of a user’s gait phase percentage. Each rising edge
of the signal acted as an event marker representing the heel
strike, and the gait phase percentage was linearly interpolated
between heel strikes as 0% to 100%, wrapping back to 0% at
the next heel strike. However, this results in discontinuities in
the gait phase percentage, as the signal would go from 99%
to 0% suddenly.

In order to avoid modeling the discontinuity in the machine
learner, we transformed the gait phase percentage into a polar
coordinate (Fig. 2), where the angle, θ , represented the gait
phase percentage between 0 and 2π (Equation 1). Using
Equations 2 and 3, we then represented the gait phase as
2 variables, x and y, where at the boundary condition of a
heel strike there is no longer a discontinuity in the Cartesian
outputs. Without this transformation, computing the error of
the machine learning estimation would have a bias at heel
contact, since the error between just before and just after heel
contact would be computed as 100% without the polar conver-
sion. By using the polar conversion, we can compute the error
between estimation and ground truth as the angle between the
two vectors in the polar representation, removing the bias at
heel contact.

θ = gait phase percentage

100
· 2π (1)

x = cos(θ) (2)

y = sin(θ) (3)

A baseline fully connected neural network with one layer
and 20 neurons was used to evaluate the feature-dependent
hyperparameters such as sliding window size and which
features were relevant. Following previous methods of fea-
ture extraction for mechanical sensors such as IMUs and

Fig. 3. Sensor selection error results. Machine learning model error was
measured in the same model with various sensor combinations to find the min-
imum number of sensors with lowest error. Error bars in the graph represent
the 95% confidence interval.

encoders [34], six features were computed for each sensor
signal: min value, max value, mean, standard deviation, first
value and last value. The sensor signals collected were the
hip encoder angle, three Euler angles from the thigh IMU
and three Euler angles from the trunk IMU, and the six fea-
tures were computed for all seven of these signals resulting
in a total of 42 features. The sliding window size was swept
through, and the size that yielded the highest accuracy was
300 ms in this baseline neural network. First, the sliding win-
dow size was swept through to find the window size that
yielded the highest accuracy (300 ms). Next, both sequential
forward feature selection for all 42 features and sequential
forward sensor selection for the seven sensors (groups of six
features) was done with the baseline neural network model
to evaluate which features were the most relevant. During
sequential forward feature selection, every permutation of the
1 to 42 features was tested to determine the individual fea-
ture contributions in reducing the overall error. During sensor
selection, each permutation of 1 to 7 sensors was tested. We
performed leave-one-user-out validation to avoid user-based
bias. Since we were limited by the amount of data to collect,
we needed to simplify the machine learning problem by elim-
inating features that are less relevant to gait phase estimation
via feature or sensor selection in order to avoid the “curse of
dimensionality” [35].

Sensor selection yielded machine learning model errors of
9.20 ± 1.92% with the hip encoder only, 5.65 ± 1.83% with
the hip encoder and thigh IMU, 7.56 ± 2.77% with the hip
encoder and trunk IMU, and 6.55 ± 1.62% with all sensors.
This sensor selection demonstrated that the hip encoder and
the thigh IMU were the most important sensors (Fig. 3). One
possible explanation for the reduced accuracy when using all
sensors is the limitation of the static baseline neural network
model used to evaluate the features. It is possible that a more
complex model is needed to estimate gait phase from all sen-
sors and could result in higher overall accuracy, but to test
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all sensor combinations fairly the same neural network model
was used. The sequential forward feature selection confirmed
the results from the sensor selections and additionally, showed
that the Z-axis (transverse plane) Euler angles were much less
favored compared to the X-axis (sagittal plane) or the Y-axis
(frontal plane) Euler angles.

After finalizing the dataset with the features and ground
truth, three different fully connected neural network models
were created to optimize the estimation task from the data. In
the “independent model” (IND), a model is trained on all but
one subject and then tested on the subject that was withheld.
This model represents a generalized model applied to a new
user, leveraging a large amount of data from a collection of
other users [31]. In contrast, the “dependent model” (DEP)
was trained on a subset of a single user’s data, and then tested
on the rest of that user’s data not yet seen by the model. This
model represents a user-specific model aimed at optimizing
the accuracy as much as possible by solely learning a sin-
gle user’s gait patterns. Finally, the “semi-dependent model”
(SEMI) was a mixture of the two aforementioned methods,
where the model starts from a pre-trained IND and then addi-
tionally trains on a small subset (half) of a single user’s data
with higher weighting and tested on the rest of that single
user’s data. Following a transfer learning approach, this SEMI
aims to maximize the accuracy for a single tested user while
minimizing the data needed from that user since it can leverage
data from other users. All of the neural networks were trained
in Python using Keras [36] with a TensorFlow GPU [37] back-
end. The models were trained on a computer with an AMD
2700X CPU (AMD, USA) and two Nvidia GTX 1070 GPUs
(ASUS, Taiwan).

In order to maximize estimation accuracy for the three
different models, the neural network parameters were swept
through to find the highest estimation accuracy. All parameters
were tuned following standard literature methods with a com-
mon dataset from all subjects (user-independent model) [38].
The model parameters were kept the same between all three
models to evaluate them fairly against each other. Additionally,
since they were later implemented in real-time, the models
needed to be of the same size for the same computation
cost on the device. The size of the input and output lay-
ers of the network are fixed from the application paradigm
(17 features and 2 outputs, respectively). Some of the hyper-
parameters that were swept were the network architecture for
both the number of layers (1-3) as well as number of nodes
per layer (10-30, in increments of 5), batch size in the set
{16, 32, 64, 128, 256}, optimizer in the set {stochastic gradient
descent (SGD) with Nesterov momentum [39], [40], ADAM,
RMSProp, AMSGrad}, learning rate in the set {0.1, 0.25, 0.5,
1, 2, 5, 10}, and activation functions for the hidden layers in
the set {tanh, ReLU, sigmoid, linear}. Although larger and
more complex network architectures would in theory perform
better, we were limited by the computation capability in the
real-time implementation of machine learning algorithm on the
hip exoskeleton device. The final hyper-parameters selected
that minimized estimation error were 20 neurons in the sin-
gle hidden layer, SGD optimizer with Nesterov momentum, a
learning rate of 0.001, tanh activation function for the hidden

Fig. 4. Offline comparison of gait phase estimator error across different
user models. With optimal neural network hyper-parameters, resulting model
had an error of 7.44 ± 2.82%, 5.04 ± 1.96%, and 5.53 ± 2.08% for the
IND, SEMI, and DEP respectively. Error bars in the graph represent the 95%
confidence interval.

layer, linear activation function for the output layer, and a
batch size of 128. All models were trained with the mean abso-
lute error (MAE) as a loss function. For the SEMI model, there
is one unique parameter that does not exist for the other mod-
els, the relative importance of the specific user data compared
to the other subjects, and it was swept through in the set {5, 10,
20, 30, 40, 50, 60, 70, 80, 90, 100}, resulting in a weighing
of 80:1 which maximized the accuracy. In order to prevent
overfitting, all models were trained for a maximum of 200
epochs, stopping early if the validation loss did not continue to
decrease in 5 epochs [41]. Additionally, training was done with
10-fold cross validation as well as leave-one-subject-out vali-
dation to remove bias across users. After the neural network
parameters were optimized, the feature optimization was per-
formed again on the optimized neural network model rather
than the baseline neural network model to ensure the features
chosen were still the best, and the results were the same. The
final offline results showed that the SEMI performed the best
(Fig. 4).

III. METHODS

A. Experimental Protocol

The study was approved by the Georgia Institute of
Technology Institutional Review Board, and informed written
consent was obtained for all subjects. For experimental
validation of the gait phase estimator, ten healthy subjects
(different from the original eight healthy subjects for initial
data collection) with an average age of 21.3 ± 1.8 years,
height of 1.79 ± 0.06 m, and body mass of 75.1 ± 4.9 kg were
initially asked to walk on a treadmill for 5 minutes with a pow-
ered hip exoskeleton and treadmill speed ranging from 0.6 m/s
to 1.0 m/s using a predefined speed profile, thus emulating the
pilot experiment (Fig. 5A). During the initial walking trial, the
hip exoskeleton was controlled in a zero impedance mode, and
the relevant sensor data from the pilot experiment (the hip
encoder and thigh IMU) were collected, as well as the FSR
sensor for ground truth labeling only. Using the data collected
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Fig. 5. Treadmill speed profile for experimental validation of the gait phase
estimator. (A) Speed profile emulating the pilot experiment. The data were
collected to generate the user dependent and semi-dependent model. (B) Speed
profile for testing the gait phase estimator. The profile was set to evaluate
model accuracy in dynamic speed range settings.

during the training trial, the DEP and SEMI were generated on
a separate computer. After all the models were trained, sub-
jects walked for 3 minutes on the treadmill with a powered
hip exoskeleton for each condition where the first minute had
a constant walking speed of 0.8 m/s, the second minute had
a predefined speed profile ranging from 0.6 m/s to 1.0 m/s,
and the third minute had a predefined speed profile ranging
from 0.8 m/s to 1.1 m/s (Fig. 5B). The maximum walking
speed was defined based on the capabilities of the exoskele-
ton, as this was the highest walking speed at which the device
could track torque accurately. While the operating speed did
not capture all the walking speed ranges (i.e., 1.5 m/s), we
believe that similar results can be expected in higher walking
speed ranges as the kinematic information at faster walking
speed does not vary too much from our tested walking speed
ranges [33].

The testing speed profile was chosen to represent and val-
idate three parts: a model performance in constant walking
speed, in speed range within the training data, and in speed
range outside of the training data (to observe model’s capa-
bility in extrapolation). During walking, four different gait
phase estimator methods were implemented: time-based esti-
mation (TBE) using FSR sensor from the previous five strides
(literature standard for baseline comparison), and the same
estimators developed from the pilot experiment (IND, DEP,
and SEMI). While previous literature study used 10 strides for
the TBE method, this may greatly either lead or lag the overall
system when there is a speed change. On the other hand, using
smaller number of strides (2 or 3 strides) can induce higher
estimation errors during steady state walking due to the user’s
gait variation on a stride-by-stride basis. From a pilot testing
and our previous study using the same TBE method on our
hip exoskeleton [15], we found that using 5 strides for the
average stride duration was optimal.

For all walking conditions, the tested gait phase estimator
generated a sinusoidal torque command with a peak torque
magnitude set to 1 Nm. Because the testing speed profile

examines three aspects of the estimator performance, the
results were segmented into three parts. Part A corresponds
to the first section in the trial representing the steady state
walking speed. Part B corresponds to the second section rep-
resenting the dynamic movement where the walking speed is
changing in the same range that the machine learning mod-
els were trained. Lastly, Part C corresponds to the dynamic
movement where the walking speed is changing in a range
not entirely within the range that the machine learning models
were trained.

B. Real-Time Machine Learning Model Implementation

Following the outcome of the pilot experiment, the real-
time implementation of the three machine learning models was
thoroughly validated. First, the feature selection process was
verified between the offline calculation in Python and the real-
time implementation on the myRIO microprocessor inside the
hip exoskeleton. Machine learning models were implemented
on the device after verifying the proper computation of the
features in a rolling window of 300 ms updating every 10 ms.
The overall matrix computation of the neural network model
can be represented as Equation 4, where F is the feature vector
of size 17×1, H is the hidden layer vector of size 20×1, and
G is the output vector of size 2×1. Wi represents the weight
matrix at layer i, and Bi represents the bias vector at layer i.

H = tanh(W1F + B1)

G �
[

x
y

]
= W2H + B2 (4)

The output of the neural network model is the pair (x, y)
in polar coordinates, which corresponds to the gait phase via
Equations (2) and (3). In order to convert back to a percentage,
which is needed for the sinusoidal torque profile calculation
on the exoskeleton, Equation (5) is used.

gait percent =
((

tan−1
(y

x

)
+ 2π

)
mod :2π

)
× 100

2π
(5)

C. Torque Profile Generation

Lastly, using the real-time gait phase estimation, the torque
profile applied to the user is generated in real-time using
Equation (6) (Fig. 6).⎧⎨

⎩
τright = cos

(
gait phase percent × 2π

100

)
τleft = −cos

(
gait phase percent × 2π

100

) (6)

A sinusoidal torque is commanded to both sides of the
device. The peak torque of 1 Nm (extension) appears at 0%
and 1 Nm (flexion) at 50% of the gait cycle for each leg to
represent the hip extension and flexion assistance. 1 Nm peak
torque is chosen to demonstrate the actual effects of the high
level gait phase algorithm on control performance, but without
errors adversely affecting the user.

D. Statistical Analysis

The FSR sensor was used to calculate the ground truth gait
phase percentage, and the corresponding ground truth torque
profile was generated by applying Equation 6. All results were
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Fig. 6. Overall flow chart of the gait phase estimator performance validation.
Feature extraction, matrix computation, and torque profile generation occurs
sequentially to provide hip assistance to the user bilaterally in real-time.

computed by comparing the gait phase estimation and torque
applied to the ground truths and calculating the root mean
squared error (RMSE). We conducted a repeated measures
one-way ANOVA test to compare the estimator performance
across the three parts, and a Bonferroni post-hoc correc-
tion (α = 0.05) for a pairwise comparison across multiple
measures.

IV. RESULTS

Overall, all machine learning methods were able to per-
form well in the real-time implementation. Generally, machine
learning strategies performed better during dynamic (chang-
ing speed) conditions. An example of real-time exoskeleton
performance of estimating the gait phase over 8 steps of the
user semi-dependent (the best performing ML algorithm), and
time-based estimation (TBE) relative to the ground truth is
shown in Fig. 7.

A. Real-Time Gait Phase Estimator Performance

In the steady state portion (Fig 8A), none of the strate-
gies performed significantly differently for gait phase estimator
RMSE or torque RMSE. However, in the dynamic conditions
(Fig. 8B+C), both the SEMI and DEP machine learning strate-
gies significantly (p < 0.05) outperformed the TBE method.
Additionally, in the high speed range (Fig. 8C), the SEMI
model performed significantly better than the IND model (p <
0.05). These statistical trends were consistent between both the
RMSE of the gait phase estimator and the torque generation.
In summary for torque generation during dynamic movements
(Parts B and C), the IND reduced average torque generation
error by 18.9% (p = 0.55), SEMI by 40.9% (p < 0.05), and
DEP by 32.4% (p < 0.05) compared to the TBE strategy. We
further investigated these trials to quantify the estimation accu-
racy by differentiating the dynamic trials into steady-state and
dynamic sections. The average RMSE for the steady-state sec-
tion were 4.83 ± 0.62% and 5.07 ± 0.49% while the dynamic
section average RMSE were 8.11 ± 2.19% and 5.22 ± 0.81%
for the TBE and SEMI, respectively across all subjects.

B. Training Time of Semi-Dependent and Dependent Models

The SEMI and the DEP were both trained on the user-
specific data from the training trials. The SEMI converged for

a much lower number of epochs, representing the number of
times observing the training set compared to the DEP. On aver-
age across subjects, the SEMI converged after 43.80 ± 5.28
epochs. The DEP converged on average after 174.60 ± 12.71
epochs.

V. DISCUSSION

The primary contribution of this study was to develop and
evaluate a sensor fusion-based machine learning model for
estimating user gait phase in real-time using a powered hip
exoskeleton. The SEMI and DEP models on average per-
formed better than the baseline time-based estimation (TBE)
by reducing the estimation error rate by 26.3% and 23.4%
respectively across all three walking conditions. The IND per-
formed similarly to the TBE by having a slight increase in the
estimation error rate by 0.7%. Specifically, during the dynamic
trials, the machine learning models outperformed the TBE
(as shown in Fig. 7) where the TBE either led or lagged in
estimation when the user was changing speeds as indicated by
the increased RMSE (by 5 times) compared to the steady-state
section. These results clearly illustrate the power of machine
learning having superiority over the TBE when the user is
dynamically accelerating or decelerating. This corresponds to
our original hypothesis that the neural network-based model
can adapt to different walking speeds because of the prior gait
phase pattern that the model has seen from the training dataset.
The significance of our models handling the dynamic tasks is
that these tasks resemble closely to what people would expe-
rience in the real-world where there is a lot of start/stop and
changing speeds. A possible implication of having an accu-
rate gait phase estimator is reducing the user’s metabolic cost
which has been considered as a “gold standard” outcome mea-
sure in the field of exoskeleton. Different literature studies
have shown that assistance timing (which is directly related to
the user’s gait phase) is a critical control parameter for max-
imizing the energetic benefit [7], [8], [14], [17], [42], [43].
Previous assistance timing studies in the literature indicated
that approximately 10% change in the assistance onset or peak
timing can correlate up to on average of 2.5% in metabolic
cost difference [8], [14], [17], [43]. These results illustrate that
the implementation of a robust gait phase estimator is critical
for maximizing the overall human exoskeleton performance
from an energetics perspective.

The key difference within the machine learning models was
the amount of user-specific data allowed. The IND is the most
convenient model out of the three models as it requires no new
data from the user. However, the IND does not perform better
than the TBE during the steady state speed and only slightly
better during the dynamic tasks. On the other hand, the SEMI
and DEP models are trained on and able to learn the user-
specific gait pattern to significantly outperform the TBE during
the dynamic tasks including the extrapolated speed ranges.
Overall, the SEMI performed the best among the machine
learning models because it aims to maximize the accuracy
for a given subject while utilizing the general dataset which
contains different gait pattern variations across other subjects.
Although the DEP, in theory, should have performed the best
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Fig. 7. Real-time performance of both the TBE and the SEMI against the ground truth over 8 strides with the corresponding walking speed. When the
walking speed either accelerates (0s ∼ 0.5 s) or decelerates (5.5 s ∼ 7.5 s), the TBE (using previous 5 strides as the average stride duration) takes several
additional steps to update the gait phase estimation while the SEMI is capable of adapting to dynamic speed changes instantaneously. Due to poor estimation
during dynamic speed ranges, corresponding torque profile generated from the TBE has discontinuity while the SEMI does not.

Fig. 8. Real-time gait phase estimation results. The speed trial had three parts to comprehend dynamic speed changes to evaluate the estimator performance.
(A) Overall performances were similar during steady state walking speed where the TBE performed the best. (B) During the dynamic speed changes within the
speed range of training dataset, the SEMI performed the best. (C) Similar trends to (B) were shown for the dynamic speed changes with speed range outside
of the training dataset where all user models were able to extrapolate and estimate the gait phase correctly and the SEMI performed the best. Asterisks indicate
the estimator that had significantly lower error between two conditions in the pairwise Bonferroni post-hoc test. Data were averaged across ten subjects and
the error bars in the graph represent the 95% confidence interval.

amongst the three machine learning-based models in real-time,
the SEMI performed slightly better. This is most likely due to
the fact that the SEMI model leverages the pre-trained IND
as well as subject-specific data, which is overall more data
compared to the DEP [44]. Furthermore, the SEMI trains for
a much smaller number of epochs than the DEP, which repre-
sents the fact that less user-specific data is needed to learn by
leveraging the IND to train from. However, in the case where
obtaining a pool of training data is not easily available (i.e.,

patient population), the DEP may be the only feasible solution
for gait phase estimation.

Since the real-time torque applied from the hip exoskele-
ton was directly mapped from the estimated user gait phase,
it is evident that the gait phase estimator accuracy dictates
the overall exoskeleton controllability. A linear correlation
between the average RMSE for the estimators in all three
walking conditions and the corresponding average torque gen-
erator RMSE yielded an adjusted R2 value of 0.941 (p <
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0.01), demonstrating a strong positive correlation between the
errors in these two areas. Depending on the types of con-
troller chosen, the torque generator RMSE may be different
but the correlation between estimator performance and torque
performance is directly related. During our experiment, we
chose a mid-level controller (sinusoidal wave) that would mit-
igate the gait phase estimation errors from the TBE, especially
at the heel contact (0 or 100%), in order to ensure a smooth
torque output to the user. Because of this, the TBE had a
slight advantage compared to other estimators when comparing
the torque error, since errors around heel contact were miti-
gated by the sinusoidal nature of the torque controller chosen.
However, this would not be the case if another mid-level con-
trol paradigm is used instead. Although the amount of torque
applied was lower than other studies, the primary finding that
a machine learning-based gait phase estimator can assist the
mid-level torque generation across different speeds holds.

Our machine learning models outperformed different meth-
ods that have been used in previous literature. The baseline
method TBE, adopted by several groups for their exoskeletons
due to its simplicity, did not yield robust estimation results dur-
ing the dynamic tasks as predicted [16], [17], [45]. Moreover,
even during a steady state walking, the TBE did not show
any significant benefits (approximately 2.5% error difference
compared to the worst performing IND). Considering its
performance, our results indicate that the TBE is appropri-
ate for experiments with a fixed treadmill speed but is not
appropriate for dynamic speed tasks. Other groups have imple-
mented more advanced methods for estimating gait phase such
as phase variables or adaptive oscillators which can be more
adaptable and continuously estimate the gait phase [46]–[48].
One example is using hip angles as a phase variable to esti-
mate the gait phase [21], [22]. Based on our analysis, this
method has substantially more phase estimation error than the
sensor fusion-based approach during dynamic speed changes.
Phase variable approach often requires couple of strides for the
model to update to a new steady-state walking speed where
as our comparable IND model only takes 29 ms to adapt in
similar walking speed ranges. Some limitations for the adap-
tive oscillator approach are the detailed subject-specific tuning
and a higher computational burden when considering real-time
implementation on a microprocessor. Compared to our DEP
model, the adaptive oscillator method performs with a similar
error rate during steady-state or gradual speed changes, but it
cannot robustly accommodate to abrupt changes in the user’s
walking speeds (specifically during acceleration), and has a
long delay time when returning to steady-state (approximately
12 seconds when tested under comparable speed changes as
our study) which is not suitable for highly dynamic, real-
world settings [23], [47]. However, recent literature works in
developing a non-user-specific adaptive oscillator show better
performance than our comparable IND model by approxi-
mately 3% gait phase estimation error rate [49], [50]. However,
this method requires additional sensors placed outside the
device interface region while our approach only utilizes the
on-board sensors (i.e., capacitance sensor cuff placed around
the shank) which may be a burden from an exoskeleton
designer perspective.

One limitation of our study is that the device training and
testing profiles were conducted in controlled speed ranges on
the treadmill. While this was mainly done to systematically
compare the estimator performance equally, this does not fully
capture real-world over ground locomotion that would likely
have even higher variability and dynamics than the simulated
tasks in this study. Another limitation is that our study did not
capture the entire range of walking speeds (i.e., fast walking at
1.5 m/s) mainly due to the device limitations. While our mod-
els can easily estimate the user’s gait phase within the trained
speed ranges and can perform well even in the ranges that
are slightly outside of the trained dataset, we do not expect
similar performance in the speed range far outside the trained
dataset mainly due to ML models not being robust in extrap-
olation [51], [52]. Additionally, we want to acknowledge that
our model architecture will need to be different for speed even
greater (i.e., 2.5 m/s) as it would be considered running and the
hip dynamics will change completely [53]. However, our mod-
els (at least the model trained with speed of 0.6 to 1.0 m/s)
can be applicable to different scenarios that are potentially
quite valuable for the community. For example, in the case of
exoskeleton applications in clinical populations such as stroke,
SCI, or MS, this speed range is often the preferred zone for
many patients with partial movement disorders which is one
of the main applications of hip exoskeletons. In such cases, we
think that the developed model approach provide meaningful
information.

Lastly, we think that the sine wave-based torque pro-
file is not ideal assistance strategy for the user. A simple
sine wave was chosen to approximate the biological torque
curve. As the biological hip moment greatly resembles a
sinusoidal wave, it was easy to implement for actual applica-
tion. Since our assistance magnitude was not large, it did not
provide any discomfort to the user during assistance mode.
We matched the phase of the sinusoid so that the torque
would be applied in the direction of movement with peak
timings matched to biological peak flexion/extension tim-
ings. Unless the gait phase estimator had large error (>25%),
the subject would not be fighting against the controller.
Previous literature studies have indicated that the assistance
control parameters can easily change the overall exoskele-
ton performance [14], [15], [17], [54], and future studies will
focus on a more appropriately tuned low level controller.

Our study results show an exciting promise for the future
direction of exoskeleton control. While IND model showed a
similar performance as to the TBE, it has a greater advantage
of not requiring an additional user specific training data. This
advantage benefits the user greatly in a scenario where col-
lecting subject specific data is impossible. The SEMI model
showcased the power of transfer learning [55] applied to the
human-augmentation robotics domain, where the user-specific
data is both highly valued and costly to attain especially for
patient populations. For example, in a clinical setting, it might
not be feasible to collect much data from the patient due to
their limited mobility. In this case, the SEMI model using
minimal additional user data may be a viable solution. By
having accurate user gait phase information, the exoskeleton
controller can be tuned to more smoothly provide assistance to
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the user compared to simpler state machines. Both the SEMI
and DEP strategies minimized error across all conditions and
could potentially be viable options for gait phase estimation
for exoskeleton devices.

VI. CONCLUSION

We have successfully implemented the user gait phase esti-
mator using a robotic hip exoskeleton in real-time to smoothly
control torque generation. Our results indicated that the sensor
fusion-based machine learning models can adapt to different
walking speeds robustly which can greatly help to generate a
more accurate assistance to the user. Additionally, we found
that applying a small portion of user-specific data to a general
model can vastly increase the overall estimator performance.
Future work will focus on exploring the online strategy to
generate a gait phase estimator model that can adapt to the
user in real-time.

ACKNOWLEDGMENT

The authors would like to thank J. Camargo and N. Csomay-
Shanklin for their help in initial concept development and J. Li,
R. Hong, and S. Maji for helping with the data collection.

REFERENCES

[1] A. J. Young and D. P. Ferris, “State of the art and future directions
for lower limb robotic exoskeletons,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 25, no. 2, pp. 171–182, Feb. 2017.

[2] T. Yan, M. Cempini, C. M. Oddo, and N. Vitiello, “Review of assis-
tive strategies in powered lower-limb orthoses and exoskeletons,” Robot.
Auton. Syst., vol. 64, pp. 120–136, Feb. 2015.

[3] H. Yu, I. S. Choi, K.-L. Han, J. Y. Choi, G. Chung, and J. Suh,
“Development of a upper-limb exoskeleton robot for refractory con-
struction,” Control Eng. Pract., vol. 72, pp. 104–113, Mar. 2018.

[4] F. A. Panizzolo et al., “A biologically-inspired multi-joint soft exo-
suit that can reduce the energy cost of loaded walking,” J. Neuroeng.
Rehabil., vol. 13, no. 1, p. 43, 2016.

[5] S. A. Kolakowsky-Hayner, J. Crew, S. Moran, and A. Shah, “Safety and
feasibility of using the EksoTM bionic exoskeleton to aid ambulation
after spinal cord injury,” J. Spine, vol. 4, no. 3, pp. 1–8, 2013.

[6] L. M. Mooney, E. J. Rouse, and H. M. Herr, “Autonomous exoskele-
ton reduces metabolic cost of human walking during load carriage,”
J. Neuroeng. Rehabil., vol. 11, no. 1, p. 80, 2014.

[7] J. Zhang et al., “Human-in-the-loop optimization of exoskeleton assis-
tance during walking,” Science, vol. 356, no. 6344, pp. 1280–1284,
2017.

[8] S. Galle, P. Malcolm, S. H. Collins, and D. De Clercq, “Reducing
the metabolic cost of walking with an ankle exoskeleton: Interaction
between actuation timing and power,” J. Neuroeng. Rehabil., vol. 14,
no. 1, p. 35, 2017.

[9] D. P. Ferris and C. L. Lewis, “Robotic lower limb exoskeletons using
proportional myoelectric control,” in Proc. IEEE Annu. Int. Conf. Eng.
Med. Biol. Soc., 2009, pp. 2119–2124.

[10] K. Seo, J. Lee, Y. Lee, T. Ha, and Y. Shim, “Fully autonomous hip
exoskeleton saves metabolic cost of walking,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), 2016, pp. 4628–4635.

[11] J. Kim et al., “Reducing the metabolic rate of walking and running with
a versatile, portable exosuit,” Science, vol. 365, no. 6454, pp. 668–672,
2019.

[12] B. Lim et al., “Delayed output feedback control for gait assistance
with a robotic hip exoskeleton,” IEEE Trans. Robot., vol. 35, no. 4,
pp. 1055–1062, Aug. 2019.

[13] K. Seo et al., “Adaptive oscillator-based control for active lower-limb
exoskeleton and its metabolic impact,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), 2018, pp. 6752–6758.

[14] A. J. Young, J. Foss, H. Gannon, and D. P. Ferris, “Influence of power
delivery timing on the energetics and biomechanics of humans wearing
a hip exoskeleton,” Front. Bioeng. Biotechnol., vol. 5, p. 4, Mar. 2017.

[15] I. Kang, H. Hsu, and A. Young, “The effect of hip assistance levels
on human energetic cost using robotic hip exoskeletons,” IEEE Robot.
Autom. Lett., vol. 4, no. 2, pp. 430–437, Apr. 2019.

[16] C. L. Lewis and D. P. Ferris, “Invariant hip moment pattern while
walking with a robotic hip exoskeleton,” J. Biomech., vol. 44, no. 5,
pp. 789–793, 2011.

[17] P. Malcolm, W. Derave, S. Galle, and D. De Clercq, “A simple exoskele-
ton that assists plantar flexion can reduce the metabolic cost of human
walking,” PLoS ONE, vol. 8, no. 2, 2013, Art. no. e56137.

[18] S. Wang et al., “Design and control of the MINDWALKER exoskeleton,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 23, no. 2, pp. 277–286,
Mar. 2015.

[19] C. J. Walsh, K. Pasch, and H. Herr, “An autonomous, underactuated
exoskeleton for load-carrying augmentation,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2006, pp. 1410–1415.

[20] S. A. Murray, K. H. Ha, C. Hartigan, and M. Goldfarb, “An assis-
tive control approach for a lower-limb exoskeleton to facilitate recovery
of walking following stroke,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 23, no. 3, pp. 441–449, May 2015.

[21] D. J. Villarreal, D. Quintero, and R. D. Gregg, “Piecewise and unified
phase variables in the control of a powered prosthetic leg,” in Proc.
IEEE Int. Conf. Rehabil. Robot. (ICORR), 2017, pp. 1425–1430.

[22] D. Quintero, D. J. Lambert, D. J. Villarreal, and R. D. Gregg, “Real-
time continuous gait phase and speed estimation from a single sensor,”
in Proc. IEEE Conf. Control Technol. Appl. (CCTA), 2017, pp. 847–852.

[23] R. Ronsse et al., “Oscillator-based assistance of cyclical movements:
Model-based and model-free approaches,” Med. Biol. Eng. Comput.,
vol. 49, no. 10, p. 1173, 2011.

[24] F. Giovacchini et al., “A light-weight active orthosis for hip movement
assistance,” Robot. Auton. Syst., vol. 73, pp. 123–134, Nov. 2015.

[25] K. Seo et al., “RNN-based on-line continuous gait phase estimation from
shank-mounted IMUs to control ankle exoskeletons,” in Proc. IEEE 16th
Int. Conf. Rehabil. Robot. (ICORR), 2019, pp. 809–815.

[26] J. Yang et al., “Machine learning based adaptive gait phase estima-
tion using inertial measurement sensors,” in Proc. Design Med. Devices
Conf., 2019, Art. no. V001T09A010.

[27] A. Young, T. Kuiken, and L. Hargrove, “Analysis of using EMG and
mechanical sensors to enhance intent recognition in powered lower limb
prostheses,” J. Neural Eng., vol. 11, no. 5, 2014, Art. no. 056021.

[28] I. Kang, P. Kunapuli, H. Hsu, and A. J. Young, “Electromyography
(EMG) signal contributions in speed and slope estimation using robotic
exoskeletons,” in Proc. IEEE 16th Int. Conf. Rehabil. Robot. (ICORR),
2019, pp. 548–553.

[29] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[30] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Netw., vol. 61, pp. 85–117, Jan. 2015.

[31] A. J. Young and L. J. Hargrove, “A classification method for user-
independent intent recognition for transfemoral amputees using powered
lower limb prostheses,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24,
no. 2, pp. 217–225, Feb. 2015.

[32] I. Kang, H. Hsu, and A. J. Young, “Design and validation of a torque
controllable hip exoskeleton for walking assistance,” in Proc. ASME
Dyn. Syst. Control Conf., 2018, Art. no. V001T12A002.

[33] D. A. Winter, “Kinematic and kinetic patterns in human gait: Variability
and compensating effects,” Human Movement Sci., vol. 3, nos. 1–2,
pp. 51–76, 1984.

[34] H. A. Varol, F. Sup, and M. Goldfarb, “Multiclass real-time intent recog-
nition of a powered lower limb prosthesis,” IEEE Trans. Biomed. Eng.,
vol. 57, no. 3, pp. 542–551, Mar. 2010.

[35] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731,
pp. 34–37, 1966.

[36] F. Chollet. (2015). Keras. [Online]. Available: https://github.com/keras-
team/keras

[37] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Symp. Oper. Syst. Design Implement.
(OSDI), 2016, pp. 265–283.

[38] V. K. Ojha, A. Abraham, and V. Snášel, “Metaheuristic design of feed-
forward neural networks: A review of two decades of research,” Eng.
Appl. Artif. Intell., vol. 60, pp. 97–116, Apr. 2017.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA,
May 2015.

[40] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the impor-
tance of initialization and momentum in deep learning,” in Proc. Int.
Conf. Mach. Learn., 2013, pp. 1139–1147.



KANG et al.: REAL-TIME NEURAL NETWORK-BASED GAIT PHASE ESTIMATION USING ROBOTIC HIP EXOSKELETON 37

[41] L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks of
the Trade. Heidelberg, Germany: Springer, 1998, pp. 55–69.

[42] Y. Ding, M. Kim, S. Kuindersma, and C. J. Walsh, “Human-in-the-loop
optimization of hip assistance with a soft exosuit during walking,” Sci.
Robot., vol. 3, no. 15, 2018, Art. no. eaar5438.

[43] Y. Ding et al., “Effect of timing of hip extension assistance during loaded
walking with a soft exosuit,” J. Neuroeng. Rehabil., vol. 13, no. 1, p. 87,
2016.

[44] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of Research
on Machine Learning Applications and Trends: Algorithms, Methods,
and Techniques. New York, NY, USA: IGI Glob., 2010, pp. 242–264.

[45] Y. Ding, I. Galiana, C. Siviy, F. A. Panizzolo, and C. J. Walsh, “IMU-
based iterative control for hip extension assistance with a soft exosuit,”
in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2016, pp. 3501–3508.

[46] T. G. Sugar et al., “Limit cycles to enhance human performance based on
phase oscillators,” J. Mech. Robot., vol. 7, no. 1, 2015, Art. no. 011001.

[47] T. Yan, A. Parri, V. R. Garate, M. Cempini, R. Ronsse, and N. Vitiello,
“An oscillator-based smooth real-time estimate of gait phase for wear-
able robotics,” Auton. Robots, vol. 41, no. 3, pp. 759–774, 2017.

[48] K. Seo, S. Hyung, B. K. Choi, Y. Lee, and Y. Shim, “A new adaptive
frequency oscillator for gait assistance,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), 2015, pp. 5565–5571.

[49] E. Zheng, S. Manca, T. Yan, A. Parri, N. Vitiello, and Q. Wang, “Gait
phase estimation based on noncontact capacitive sensing and adaptive
oscillators,” IEEE Trans. Biomed. Eng., vol. 64, no. 10, pp. 2419–2430,
Oct. 2017.

[50] S. Crea et al., “Controlling a robotic hip exoskeleton with noncontact
capacitive sensors,” IEEE/ASME Trans. Mechatronics, vol. 24, no. 5,
pp. 2227–2235, Oct. 2019.

[51] B. W. Stansfield, S. J. Hillman, M. E. Hazlewood, and J. E. Robb,
“Regression analysis of gait parameters with speed in normal chil-
dren walking at self-selected speeds,” Gait Posture, vol. 23, no. 3,
pp. 288–294, 2006.

[52] K. Kosanovich, A. Gurumoorthy, E. Sinzinger, and M. Piovoso,
“Improving the extrapolation capability of neural networks,” in Proc.
IEEE Int. Symp. Intell. Control, 1996, pp. 390–395.

[53] R. A. Mann and J. Hagy, “Biomechanics of walking, running,
and sprinting,” Amer. J. Sports Med., vol. 8, no. 5, pp. 345–350,
1980.

[54] S. H. Collins, M. B. Wiggin, and G. S. Sawicki, “Reducing the energy
cost of human walking using an unpowered exoskeleton,” Nature,
vol. 522, no. 7555, pp. 212–215, 2015.

[55] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


